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Abstract. We study the scalability of parallel discrete-event simulations for arbitrary
short-range interacting systems with asynchronous dynamics. When the synchroniza-
tion topology mimics that of the short-range interacting underlying system, the vir-
tual time horizon (corresponding to the progress of the processing elements) exhibits
Kardar-Parisi-Zhang-like kinetic roughening. Although the virtual times, on average,
progress at a nonzero rate, their statistical spread diverges with the number of process-
ing elements, hindering efficient data collection. We show that when the synchroniza-
tion topology is extended to include quenched random communication links between
the processing elements, they make a close-to-uniform progress with a nonzero rate,
without global synchronization. We discuss in detail a coarse-grained description for
the small-world synchronized virtual time horizon and compare the findings to those
obtained by “simulating the simulations” based on the exact algorithmic rules.

1 Introduction

Synchronization is a fundamental problem in natural or artificial coupled multi-
component systems [1]. To achieve it in an autonomous fashion can be a particu-
larly challenging task from a system design viewpoint. In this chapter we discuss
such a problem in the context of scalable Parallel Discrete-Event Simulations
(PDES) [2–4]. Examples of PDES applications include dynamic channel alloca-
tion in cell phone communication network [4,5], models of the spread of diseases
[6], battle-field simulations [7], and dynamic phenomena in highly anisotropic
magnetic systems [8–10]. In these examples the discrete events are call arrivals,
infections, troop movements, and changes of the orientation of the local magnetic
moments, respectively. We focus on the basic algorithm suitable for simulating
large spatially extended systems with short-range interactions and asynchronous
dynamics [11,12].

In discrete-event simulations, the instantaneous local updates (discrete-
events) occur in continuous time. The algorithm must faithfully and reproducibly
keep track of the asynchrony of the local updates in the system’s configuration.
For example standard random-sequential Monte Carlo simulations naturally pro-
duce Poisson asynchrony. In fact, such continuous-time simulations (e.g., sin-
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gle spin-flip Glauber dynamics) were long believed to be inherently serial until
Lubachevsky’s illuminating work [11,12] on the parallelization of these simula-
tions without altering the underlying dynamics. The essence of the problem is to
algorithmically parallelize “physically” non-parallel dynamics of the underlying
system. This requires some kind of synchronization to ensure causality. The two
basic ingredients of PDES are the set of local simulated times (or virtual times
[13]) and a synchronization scheme. First, a scalable PDES scheme must ensure
that the average progress rate of the simulation approaches a nonzero constant
in the long-time limit as the number of Processing Elements (PEs) N goes to
infinity. Second, the “width” of the simulated time horizon (the spread of the
progress of the individual PEs) should be bounded as N goes to infinity [14].
The second requirement is crucial for the measurement phase of the simulation
to be scalable: a large width of the virtual time horizon hinders scalable data
management. Temporarily storing a large amount of data on each PE (being ac-
cumulated for “on-the-fly” measurements) is limited by available memory while
frequent global synchronizations can get costly for large N . Thus, one aims to
devise a scheme where the PEs make a nonzero and close-to-uniform progress
without global synchronization. In such a scheme, the PEs autonomously learn
the global state of the system (without receiving explicit global messages) and
adjust their progress rate accordingly.

As the number of PEs available on parallel architectures increases to hun-
dreds of thousands [15], or grid-computing networks proliferate the internet [16,
17] fundamental questions of the scalability of the underlying algorithms must
be addressed. The center of our interest here is to understand the effects of
the “microscopic dynamics” (corresponding to the algorithmic synchronization
rules) and the effects of the underlying communication network among the PEs
on the evolution and the morphological properties of the virtual time horizon.
We achieve this by looking at the parallel simulation itself as a complex interact-
ing system. A similar approach was also successful to establish connection [18]
between rollback-based (or optimistic) schemes [13] and self-organized criticality
[19]. Our main finding is that extending the basic conservative synchronization
rules [11,12] to a small-world-like [20] communication topology among the PEs
results in both a finite width of the time horizon and a nonzero progress rate of
the simulation [21]. Performing additional synchronizational steps through the
random links at a very small rate can only reduce the average progress rate in-
finitesimally while the width is reduced from infinity (in the limit of an infinite
number of PEs) to some manageable finite value.

2 The Basic Conservative Scheme

The basic notion of discrete-event simulations is that time is continuous and the
discrete events occur instantaneously. Between events, the state (configuration)
of the system remains unchanged. If the events occur at random instants of
time, the dynamics can be referred to as asynchronous. In conservative PDEs
schemes [22], only those PEs that are guaranteed not to violate causality are
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allowed to process their events and increment their local time. The rest of the
PEs must “idle”. For simplicity we consider an arbitrary but one-dimensional
underlying system (the “physical” system to be simulated) with nearest-neighbor
interactions in which discrete events (update attempts in the local configuration)
exhibit Poisson asynchrony. Further, we focus on the one site-per-PE scenario
where each PE has its own local simulated time hi(t), constituting the virtual
time horizon {hi(t)}Ni=1. Here t is the number of parallel steps executed by all
PEs (proportional to the wall-clock time) and N is the number of PEs. By
construction, hi(t) is the progress of PE i after parallel step t. In the following, we
will use the terms “height”, “simulated time”, or “virtual time” interchangeably,
since we refer to the same observable.

According to the basic conservative synchronization scheme, first introduced
by Lubachevsky, [11,12], at each parallel step t, only those PEs for which the
local simulated time is not greater then the local simulated times of their virtual
neighbors, can increment their local time by an exponentially distributed random
amount. (Without loss of generality we assume that the mean of the local time
increment is one in simulated time units [stu].) Thus, for the one-site-per-PE,
one-dimensional regular virtual topology, if hi(t) ≤ min{hi−1(t), hi+1(t)}, PE
i can update the configuration of the underlying site it carries and determine
the time of the next event. Otherwise, it idles. Despite its simplicity, this rule
preserves unaltered the asynchronous causal dynamics of the underlying system
[11,12]. (More general PDES schemes, where events to be processed by a PE are
initiated (or generated) by the same PE (such as the basic conservative scheme
above), are also referred to as self-initiating discrete-event schemes [23,24].) In
the original algorithm, the virtual communication topology between PEs mimics
the interaction topology of the underlying system [11,12,25]. When “simulating
the simulations” based on the above simple “microscopic” rules for the evolution
of the time horizon, we implemented periodic boundary conditions, i.e., the PEs
are placed on a ring. In analyzing the performance of the above scheme, it is
enormously helpful that the progress of the simulation itself is decoupled from
the possibly complex behavior of the underlying system. This is contrary to
optimistic approaches, where the evolution of the underlying system and the
progress of the PDES simulation are strongly entangled [18], making scalability
analysis a much more difficult task.

To understand the scalability and performance of the basic conservative
scheme we study two basic observables: the average utilization 〈u〉 (the fraction
of non-idling PEs), which directly corresponds to the average rate of progress of
the simulation, and the average width of the virtual time horizon, which probes
the complexity of data management during the simulation. On a regular one-
dimensional lattice the utilization is the density of local minima

〈u〉 = 〈Θ(hi−1 − hi)Θ(hi+1 − hi)〉 = 〈Θ(−φi−1)Θ(φi)〉 , (1)

where φi ≡ hi+1 − hi is the local slope, Θ(. . . ) is the Heaviside step function,
and 〈. . . 〉 denotes an ensemble average over the stochastic, exponentially dis-
tributed local simulated time increments. For a system of identical PEs (imply-
ing translational invariance), the above quantity is independent of i. The width,
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characterizing the spread of the time horizon, is defined as

〈w2〉 =

〈
1
N

N∑

i=1

(hi − h̄)2
〉

(2)

where h̄ = (1/N)
∑N
i=1 hi is the mean-height.

Here we use a coarse-grained description for the virtual time horizon to per-
form the scalability analysis [25,26]. It was shown [25] that the virtual time hori-
zon exhibits Kardar-Parisi-Zhang (KPZ)-like [27] kinetic roughening [28] and the
steady-state behavior in one dimension is governed by the Edwards-Wilkinson
(EW) Hamiltonian [29]. The evolution of the simulated time horizon is effectively
governed by the Langevin equation

∂thi(t) = ∇2hi − λ(∇hi)2 + . . .+ ηi(t) , (3)

where ηi(t) is a delta correlated Gaussian noise 〈ηi(t)ηj(t′)〉=2Dδijδ(t− t′), and
∇ and ∇2 are the discrete gradient and discrete Laplacian operators on a regular
lattice, respectively. The . . . in (3) stands for infinitely many irrelevant terms
in the long-time, large-N limit. Being primarily interested in the steady-state
properties of the algorithm, we consider the equal-time height-height correla-
tions, or alternatively, its Fourier transform, the corresponding structure factor
S(h)(k, t), defined through

S(h)(k, t)Nδk,−k′ ≡ 〈h̃k(t)h̃k′(t)〉 . (4)

Here h̃k =
∑N
j=1 e

−ikjhj is the Fourier transform of the virtual times with the
wave number k = (2πn)/N , n = 0, 1, 2, . . . , N−1. In the long time limit in one
dimension (EW stationary state), one has [26]

S(h)(k) ≡ lim
t→∞S

h(k, t) =
D

2[1− cos(k)]
. (5)

The structure factor essentially contains all the “physics” needed to describe the
scaling behavior of the time horizon. Figure 1(a) shows the measured structure
factor, obtained by simulating the PDES simulation itself, based on the exact
rules for the evolution of the local times. It confirms the ∼1/k2 coarse-grained
prediction for small k values. Using the steady-state structure factor, one can
express the width as

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) . (6)

The above summation can be carried out for the structure factor given by (5),
yielding

〈w2〉N � D

12
N ∼ N2α , (7)
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Fig. 1. (a) Steady-state height-height structure factor for various system sizes for the
regular one-dimensional lattice, one-site-per-PE basic conservative PDES time hori-
zon. The solid straight line indicates the theoretical ∼1/k2 behavior, (5), for small k
values. (b) Steady-state width and extreme-height fluctuations for the same scheme as
a function of the number of PEs. The dashed straight line corresponds to the exact
KPZ (EW in one dimension) roughening (7).

(corresponding to a roughness exponent α=1/2) in the limit of large N . Fig-
ure 1(b) shows the measured width, asymptotically approaching the above scal-
ing form. For later calculations, we will also need the slope-slope steady-state
structure factor

S(φ)(k) = 2[1− cos(k)]S(h)(k) = D (8)

and the corresponding correlation function

C(φ)(l) = 〈φiφi+l〉 =
1
N

∑

k 	=0

eiklS(φ)(k) (9)

to study the density of local minima. From (8) and (9) it trivially follows that
C(φ)(l)=Dδl,0 (i.e., the local slopes become independent) in the infinite system-
size limit. Then the probability that two neighboring local slopes form a local
minima is 1/4. Hence, the density of local minima and the utilization 〈u〉 [see (1)]
approaches 1/4. (The steady state is governed by the EW Hamiltonian where
the local slopes are independent.)

For more general two-point functions (but still within the coarse-grained
Gaussian picture (5), we utilize a simple relationship between the density of
local minima and the slope-slope correlation function [26]

〈Θ(−φi−1)Θ(φi)〉 =
1
2π

arccos
(
C(φ)(1)
Cφ(0)

)
. (10)

The above formula can be used, e.g., to extract finite-size corrections to the
utilization [26]. From (8) and (9), for a finite system, one finds that C(φ)(l) =
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D(δl,0 − 1/N) and from (1) and (10), 〈u〉 � 1/4 + 1/(2πN). Clearly, the specific
value 1/4 in the thermodynamic limit and the prefactor of the 1/N finite-size
corrections will differ from those of the actual PDES evolution with its specific
“microscopic dynamics”. The density of local minima, however, must remain
nonzero and it displays universal finite-size effects [25,26,30–34],

〈u〉N � 〈u〉∞ +O
(

1
N

)
, 〈u〉∞ �= 0 , (11)

based on the universality class (EW in one dimension) the virtual time hori-
zon belongs to. Thus, the average progress rate of the simulation approaches a
nonzero constant in the asymptotic long-time, large-N limit. For example, for
the one-site-per PE basic conservative PDES scheme 〈u〉∞�0.2464 [25,26], due
to non-universal short-range correlations between the local slopes [35].

The average width of the virtual time horizon, however, diverges as N→∞
[see (7)], making the measurement phase of the PDES scheme (data collection)
not scalable [30]. Since the effect of very large fluctuations in the progress of the
individual PEs is also important (after all, delays will be caused by state-saving
difficulties on the individual nodes, where extreme events occur), we investigated
the properties of the extremal-height fluctuations. We considered the average of
the largest height fluctuations above the mean ∆max ≡ hmax − h̄. The average
or typical extreme-height fluctuations in the basic conservative PDES scheme
exhibit the same scaling behavior as the width itself, 〈∆2

max〉∼N [Fig. 1(b)]. This
is not particularly surprising in that the extreme fluctuations emerge through
the dominating collective long-wavelength modes of the “critical” surface. This
finding was also observed [36] for other surface growth models belonging to KPZ
universality class.

Finally, we note that, in an attempt to construct an analytically tractable
model for PDES, Greenberg et al. [14] introduced the K-random model. Here
at each update attempt, PEs compare their local simulated times to the local
simulated times of K randomly chosen PEs (rechosen at every update attempt).
They showed that in the t→∞, N→∞ limit the average rate of progress of
the simulation converges to a non-zero constant, 1/(K + 1). Further, they also
showed that the evolution of the time horizon converges to a traveling wave so-
lution described by a finite width of the distribution of the local times. Finally,
they suggested that the qualitative properties of the K-random model are uni-
versal and hold for regular lattice models as well. As we have shown above, their
latter conjecture for the width does not hold, thus, the basic conservative PDES
scheme for regular lattices cannot be equivalently described by K-random model
(at least not below the critical dimension of the KPZ universality class [28,37]).
Nevertheless, their “annealed” random connection model is highly inspiring in
that the underlying connection topology can have crucial effects on the univer-
sal behavior of the evolution of the virtual time horizon, and in turn, on the
synchronizability of PDES schemes.
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3 The Small-World Synchronized
Conservative PDES Scheme

3.1 Motivation and Properties for the Synchronization Network

The divergent width and extreme-height fluctuations (with increasing N), dis-
cussed in the previous section, are the result of the divergent lateral correlation
length ξ(h) of the virtual time surface, which reaches the system size N in the
steady state [28,30]. To de-correlate the simulated time horizon, first, we modify
the virtual communication topology of the PEs. The resulting communication
network must include the original short-range (nearest-neighbor) connections
to faithfully simulate the dynamics of the underlying system. In the modified
network, the connectivity of the nodes (the number of neighbors) should remain
non-extensive (i.e., only a finite number of virtual neighbors per node is allowed).
This is in accordance with our desire to design a PDES scheme where no global
“intervention” or synchronization is employed (PEs can only have O(1) commu-
nication exchanges per step). It is clear that the added synchronization links (or
at least some of those) have to be long range. (Only short range links would not
change the universality class and the scaling properties of the width of the time
horizon). Also, fluctuations in the individual connectivity should be avoided for
load balancing purposes, i.e., requiring the same number of added links (e.g.,
one) for each node is a reasonable constraint.

One may wonder how the collective behavior of the PDES scheme would
change if each node was connected to the one located at the “maximum” possible
distance away from it (N/2 on a ring) [Fig. 2(a)] [38]. Consider a linear coarse-
grained Langevin equation with Gaussian noise where the effective strength of
the added long-range links is Σ,

∂thi(t) = (hi+1 + hi−1 − 2hi)−Σ(hi − hi+N/2) + ηi(t) , (12)

with periodic boundary conditions. After elementary calculations one obtains
for the width

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) =
1
N

∑

k 	=0

D

2[1− cos(k)] + 2Σ[1− cos(kN/2)]
, (13)

where k = (2πn)/N , n = 0, 1, 2, . . . , N−1 as before (and N is even for simplicity).
Separating the terms with even and odd n values above, we find

〈w2〉 =
1
N

∑

n=odd

D

2[1− cos(2πn/N)] + 4Σ

+
1
N

∑

n=even

D

2[1− cos(2πn/N)]
. (14)

The first sum yields a finite N independent value in the N→∞ limit. The sec-
ond sum, on the other hand, is identical to the width of the EW model on
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(a) (b)

Fig. 2. Schematic diagrams for the PDES synchronization networks. (a) Maximal-
distance connected network as described in the text. (b) Small-world network where
each PE has exactly one quenched random neighbor.

a regular network of size N/2. Thus, in the large N limit the width for the
“maximal-distance” connected network [Fig. 2(a)] diverges as 〈w2〉N�DN/24.
Indeed, one can realize, that such regularly patterned long-range links make
the network equivalent to a 2×(N/2) quasi one-dimensional system with only
nearest-neighbor interactions and helical boundary conditions. The above ex-
treme case suggests, that the purely maximum-range synchronization cannot
work either.

We then choose the extra synchronization links in such a way that they cover
all lengthscales with equal weight [21]. With the one extra link per PE constraint,
we employ quenched random bidirectional links, i.e., each PE is connected to
exactly one other PE, as illustrated on Fig. 2(b). That is, pairs of sites selected
at random, and once they are linked they cannot be selected again. The resulting
network resembles a (constrained) small-world-like network [20]. It differs from
both the original (“rewiring”) [20,39] and the “soft” version [40,41] of the Small-
World (SW) network (where an Erdős-Rényi random graph is thrown on top
of a regular lattice). Our construction too, however, exhibits a well balanced
coexistence among short- and long-range links (random links are placed on the
top of a regular substrate), and we will refer to it as a SW network in what
follows. When explicit distinction is needed among the above versions of the
SW networks, we will refer to our construction as the “hard” version of the
SW network. This terminology is motivated by the eigenvalue spectrum of the
Laplacian on the different variations of the SW networks [42,43], discussed in
more detail in [43,44] and in the chapter by Hastings and Kozma in this book.

As one can expect, the average path length 〈l〉N (the average minimum num-
ber of links connecting two randomly chosen nodes) for our synchronization net-
work scales logarithmically with the system size N [Fig 3], i.e., like most other
random networks [45], it too exhibits the “small-world” character (or low-degree
of separation).

We now describe the modified algorithmic steps for the SW connected PEs
[21]. In the modified conservative PDES scheme, at every parallel step each
PE with probability p compares its local simulated time with its full virtual
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Fig. 3. Average shortest path as a function of the logarithm of the number of nodes
(PEs) for our small-world synchronization network [Fig. 2(b)]. The straight line rep-
resents the slope of the asymptotic large N behavior of the average shortest path
〈l〉N � 1.42 ln(N).

neighborhood and can only advance if it is a neighborhood minimum, i.e., if
hi(t) ≤ min{hi−1(t), hi+1(t), hr(i)(t)}, where r(i) is the random connection of
PE i. With probability (1 − p) each PE follows the original scheme, i.e., the
PE then can advance if hi(t) ≤ min{hi−1(t), hi+1(t)}. Note that the occasional
extra checking of the simulated time of the random neighbor is not needed for
the faithfulness of the simulation. It is merely introduced to control the width
of the time horizon.

3.2 Coarse-Grained Equation of Motion
for the Small-World-Coupled Conservative PDES Scheme

We now obtain a coarse-grained description for the evolution of the virtual time
horizon. The occasional checking of the virtual time (at every 1/p parallel steps
on average) through the random links introduces an effective strength p̃ for
these links. Note that this is a dynamic “averaging” process, controlled by the
parameter p, the probability of checking the random neighbor as well. The only
properties we assume about p̃(p) is that it is a monotonically increasing function
of p and is only zero when p=0. The effective Langevin equation then becomes

∂thi(t) = (hi+1 + hi−1 − 2hi)−
N∑

j=1

Jij(hi − hj) + . . .+ ηi(t) , (15)

where ηi(t) is delta-correlated Gaussian noise as in (3) and Jij is proportional to
the symmetric adjacency matrix of the random part of the network with exactly
one non-zero element (being equal to p̃) in each row and column. The former
property implies that

∑
l Jil=p̃ for all i, which is related to our construction that

there are no fluctuations in the individual connectivity. The . . . in (15) stand for
all non-linear terms (involving non-linear interactions through the random links
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as well). “Phenomenological” results of simulating the simulation (Sect. 3.3)
suggest that the dynamic control of the link strength and non-linearities only
give rise to a renormalized coupling and a corresponding renormalized mass
(in a field theory sense). Thus, the dynamics is effectively governed by EW
relaxation in a small world. This motivates the study of the EW model on a
SW network, i.e., keeping only the linear terms in (15). That problem is studied
in detail in [43,44] and in the chapter by Hastings and Kozma in this book. A
disorder-averaged systematic perturbation expansion yields an effective “mass”
Σ(p̃) ∼ p̃ + O(p̃3/2) in the asymptotic small-p̃ limit. In our case, when non-
linearities are indeed present and the strength of the random links is controlled
by the relative frequency p of the synchronization steps through those links, we
will only assume that Σ(p) is a monotonically increasing function of p and is only
zero when p=0. In the following, for brevity, 〈. . . 〉 will denote the double average:
ensemble average based on the stochastic dynamics [e.g., over the noise in (15)],
and disorder average over the random network realizations. The resulting steady-
state structure factor (or propagator) for (15) then reads as [44]

S(h)(k) =
1
N
〈h̃kh̃−k〉 =

D

2[1− cos(k)] +Σ
. (16)

The above structure factor contains the essential properties of the SW synchro-
nized PDES scheme at the coarse grained level. In particular, the SW links in-
duce a finite correlation length ξ(h) for the surface fluctuations. In the following
we will only discuss the infinite-system small-Σ behavior, when the finite-size
effects vanish and the discrete-lattice effects become negligible. In this limit,
ξ(h)�1/

√
Σ. Also from (16), for the width of the time horizon one obtains

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) � 1
2
√
Σ
. (17)

i.e., the width remains finite in the N→∞ limit. (Note that Σ(p) is only zero
when p=0.) The implication of this result for the SW synchronized PDES scheme
is that the spread of the virtual time horizon will approach a finite value in the
limit of infinite number of PEs for any nonzero value of p.

We now discuss some general considerations for the the utilization 〈u〉 (the
average progress rate) for the SW synchronized PDES scheme. From the algo-
rithmic rules it follows that

〈u〉 = (1− p)〈Θ(−φi−1)Θ(φi)〉+ p〈Θ(−φi−1)Θ(φi)Θ(hr(i) − hi)〉 , (18)

where p is the probability to include the random neighbor as well in the syn-
chronization step. Note that the disorder averaging makes the right hand side
independent of i. For general p (with the random links present) it is hard to carry
out quantitative approximations for the utilization. Since the height fluctuations
become short-range correlated (16) and the local slopes remain short-range cor-
related [see discussion below, (21)], it is guaranteed that both terms in (18),
and subsequently 〈u〉, remain non-zero for any 0≤p≤1 [35,46]. Rearranging the
terms in (18) one obtains
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〈u〉 = 〈Θ(−φi−1)Θ(φi)〉
− p [〈Θ(−φi−1)Θ(φi)〉 − 〈Θ(−φi−1)Θ(φi)Θ(hr(i) − hi)〉

]
. (19)

The first term, 〈Θ(−φi−1)Θ(φi)〉=〈Θ(hi−1 − hi)Θ(hi+1 − hi)〉, is an increasing
function of p, as the heights become less correlated [46]. For example, it would
be 1/4 for completely independent slopes, and it would be 1/3 for completely
independent heights. The actual values differ for the PDES time horizon (the
slopes and heights exhibit some short-range correlations), but the above trend
remains and 〈Θ(−φi−1)Θ(φi)〉 saturates rapidly as a function of p [46]. The
quantity in [. . . ] in (19) is always positive, bounded from zero, so it will eventually
lead to the decrease in 〈u〉 as O(p), once 〈Θ(−φi−1)Θ(φi)〉 saturates. For very
small values of p, however, the leading order correction to 〈Θ(−φi−1)Θ(φi)〉 may
become more dominant than O(p). In this case, as it is clear from (19), the small-
p behavior of 〈Θ(−φi−1)Θ(φi)〉 alone yields the asymptotic small-p behavior of
〈u〉.

We now continue to discuss the density of local minima and the utilization
for the coarse-grained linear model with Gaussian noise [(15) and (16)], which
may capture some of the small-p features of the actual PDES time horizon. We
also make the mean-field assumption that the structure factor and correlation
functions are self-averaging in the large system-size limit. First, from (16) we
find for the slope-slope structure factor

S(φ)(k) = 2[1− cos(k)]S(h)(k) = D

{
1− Σ

2[1− cos(k)] +Σ

}
, (20)

which yields

C(φ)(l) � D
{
δl,0 −Σe

−l√Σ

2
√
Σ

}
= D

{
δl,0 −

√
Σ

2
e−l

√
Σ

}
(21)

for the slope correlation function in the infinite system-size, small-Σ limit. The
above equation shows explicitly, that the local slopes remain short-range corre-
lated for the SW-synchronized time horizon. Using (10) and the above form of
the slope correlations, in the small-Σ limit we obtain

〈Θ(−φi−1)Θ(φi)〉 � 1
4

+
√
Σ

4π
− Σ

8π
+ . . . (22)

This implies that increasing the effective mass increases the density of local
minima. This is not surprising, in that increasing Σ reduces the correlation
length ξ(h) for the height fluctuations, as discussed above. Using (19) and (22),
we obtain for the utilization

〈u〉 � 1
4

+

√
Σ(p)
4π

− Σ(p)
8π

+ . . .+O(p) , (23)

where we now explicitly indicated the p-dependence of Σ. If Σ(p) is known,
more precisely, if Σ(p)∼ps with s<2 for small p values, the above equation
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becomes useful to extract the asymptotic small-p behavior of the utilization. It
is instructive to consider the mean-field case when the effective strength of the
random links [in (15)] scales as p, at least for small p values. Then Σ(p)∼p [44],
and to leading order in p, one finds

〈u〉 � 1
4

+
√
p

4π
+O(p) . (24)

The above counterintuitive behavior of increasing 〈u〉 by actually synchronizing
“more” is the result of the gain in 〈Θ(−φi−1)Θ(φi)〉 [O(

√
p)] winning over the loss

due to the occasional extra random synchronizations [O(p)], for asymptotically
small p values. As p is increased, (24) will not be valid anymore; 〈Θ(−φi−1)Θ(φi)〉
starts to saturate, so the change in 〈u〉 will be dominated by the −O(p) factor
in (19).

Some analogy between the evolution of the virtual time horizon with quenched
random links added and the sliding state of charge-density waves with “no-
passing” rule [47] suggests [48] that the above mean-field coarse-graining argu-
ment may break down and the average rate of progress of the SW-synchronized
conservative scheme for arbirary small p is bounded by that of the p=0 case.

3.3 Comparison with the Simulated Small-World
Synchronized PDES Results

We now turn to discussing the results obtained by simulating the actual PDES
scheme, based on the specific update rules for the local simulated times (see
the end of Sect. 3.1). The fundamental difference between the original and the
SW-synchronized conservative scheme is illustrated on Fig. 4. The snapshots
of the virtual times indicate that, indeed, the large-amplitude long-wavelength
fluctuations, present in the original time horizon [Fig. 4(a)] are suppressed when
the extra synchronizations through the quenched random links are implemented
[Fig. 4(b)].

Since all steady-state characteristics are “encoded” in the structure factor of
the virtual times, we measured this quantity, and compared it to

S(h)(k) ∝ 1
k2 +Σ(p)

, (25)

the small k limit of (16). Figure 5(a) shows the disorder-averaged structure
factors, as well as individual realizations for various system sizes. As one can
observe, finite-size effects become small and S(h)(k) approaches a finite value as
k→0. Thus, there are no large-amplitude, long-wavelength modes in the virtual
time horizon. Further, the inset of Fig. 5(a) confirms the “massive” behavior
(25) for small k values. It is important to note that for the actual PDES time
horizon, the effective mass Σ(p) may depend non-trivially on p as a result of
the dynamic control of the “link strength” and renormalization by nonlinear ef-
fects in the specific “microscopic dynamics”. The form of S(k), however, seems
to follow the linear theory, discussed in Sect. 3.2. By plotting 1/S(h)(k) vs. k2
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Fig. 4. Snapshots of the virtual time horizon in the steady state (a) for the original
regular lattice (p=0) and (b) for the small-world synchronized (p=0.10) PDEs scheme
for N=10000. The vertical scale is the same in (a) and (b).
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Fig. 5. (a) Steady-state structure factor of the virtual time horizon for p=0.10. In
addition to ensemble averages over 100 realizations of the random links (filled symbols),
single realizations (the same open symbols) are also shown. The inset shows a magnified
view of 1/S(k) versus k2 for small k for the largest system. The solid straight line is
the best linear fit used to determine the correlation length. (b) Correlation length
of the virtual time horizon as a function of the random synchronization frequency p.
For reference, the solid straight line corresponds to the power-law divergence with the
power −1/2.

[inset of Fig. 5(a)] for the measured structure factors, we can “phenomenologi-
cally” determine the correlation length of the fluctuations of the virtual times,
ξ(h)(p)�1/

√
Σ(p). The results are shown in Fig. 5(b)]. The inset implies, that

the asymptotic small-p scaling regime has not been reached yet at our smallest
value p=0.01.

The results for the width and for the utilization also agree with the ba-
sic prediction of the coarse-grained linear model. Even for small p values, the
width saturates, and approaches a system-size independent value for large N



268 H. Guclu et al.

10
1

10
2

10
3

10
4

10
5

N

10
0

10
1

10
2

10
3

10
4

<
w

2 >
N

p=0.00
p=0.01
p=0.10
p=1.00

(a)

0 20000 40000 60000 80000 100000
N

0.1

0.15

0.2

0.25

0.3

<
u>

N

p=0.00
p=0.01
p=0.10
p=1.00

(b)

Fig. 6. (a) Average steady-state width of the virtual time horizon as function of
the number of PEs for various values of p. In addition to ensemble averages over 10
realizations of the random links (filled symbols), a single realization is also shown (the
same open symbols). The solid straight line represents the asymptotic one-dimensional
KPZ power-law divergence with roughness exponent α=1/2 for the p=0 case. Note the
log-log scales. (b) The steady-state utilization (fraction of non-idling PEs) for the same
cases as in (a).

[Fig. 6(a)] while the utilization remains non-zero [Fig. 6(b)]. For example, for a
hypothetically infinite system, for p=0.01, 〈w2〉 is reduced from “infinity” (the
width for the KPZ surface) to about 40, while the utilization drops from 0.2464
only to about 0.2460. For p=0.10, the width is further reduced to about 5,
while the utilization is down only to 0.242. One can also observe the clear self-
averaging property for both global observables (the width and the utilization),
i.e., their values become independent of the realization of the SW network for
large enough N .

To extract the asymptotic small-p behavior of the width and the utilization,
one would need larger system sizes, longer steady-state PDES time series, and
more network realizations to obtain reliable statistics, and to compare all as-
pects of the linearized coarse-grained model with the actual PDES simulations.
In particular, it would be interesting to see, whether the utilization increases ini-
tially for sufficiently small p values (the subtle prediction of the coarse-grained
linear theory). We have not observed this, but the systems we simulated have
not yet reached their asymptotic scaling regime [inset of Fig. 5(b)]. Further,
finite-size corrections and error bars may become comparable to this possible
asymptotically small effect in 〈u〉.
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3.4 Extremal Fluctuations of the Virtual Time Horizon

In addition to the average value of the fluctuations of the local field variables
(such as the height in the context of surface growth models), the typical value of
the largest fluctuations can also be of great importance [49–51] in a number of ap-
plications. For example, in load balancing networks [52] or state-saving schemes
for PDES schemes [30,53], extreme (load or accumulated data) fluctuations on
an individual node will cause the delays. Thus, in interacting multi-component
systems such as the above examples, failures or delays are triggered by extreme-
events occurring on the individual components [51].

Relationship between extremum statistics and universal fluctuations in cor-
related systems have been discussed intensively in recent years. [36,54–60]. For
the original PDES scheme (p=0, regular lattice synchronization) exhibiting a
KPZ-like rough (or critical) surface, we illustrated (Sect. 2) that the extremal
fluctuations of the time horizon diverge in the same fashion as the width itself
[Fig. 1(b)]. We now discuss to what extent SW synchronizations lead to the
suppression of the extreme-height fluctuations in the virtual time horizon [53],
closely related to the measurement scalability of the conservative PDES scheme.

First, considerN independent identically distributed stochastic variables with
a complementer cumulative distribution P>(x) (the probability that the indi-
vidual stochastic variable is greater than x). Then the cumulative distribution
Pmax
< (x) for the largest of the N events (the probability that the extremal value

is less than x) can be approximated as [60,61]

Pmax
< (x) = [P<(x)]N = [1− P>(x)]N = eN ln[1−P>(x)] � e−NP>(x) , (26)

where one typically assumes that the dominant contribution to the statistics
of the extremes comes from the tail of the individual distribution P>(x). For
example, for exponentially-tailed individual variables, P>(x)�e−cx, the above
equation yields

Pmax
< (x) � e−e−cx+ln(N)

. (27)

Thus, the sequence of scaled variables x̃ = c(x − ln(N)/c) asymptotically ap-
proaches the standard Fisher-Tippett-Gumbel (FTG) distribution [49,50]

P̃max
< (x̃) � e−e−x̃

(28)

with mean 〈x̃〉=γ (γ=0.577 . . . being the Euler constant) and variance 〈x̃2〉 −
〈x̃〉2 = π2/6. It immediately follows that the average value of the largest of the
N original random variables then scales as

〈xmax〉 = γ/c+ ln(N)/c � ln(N)/c (29)

for large N values. When comparing with simulation or experimental data, it
is often convenient to use the scaled variables x̂ = (x − 〈x〉)/σx which for the
above case yields the FTG limit distribution with zero mean and unit variance



270 H. Guclu et al.

−18 −12 −6 0 6 12 18
hi−h

−

10
−6

10
−4

10
−2

10
0

p(
h i−

h−
)

N=10
3

N=10
4

N=10
5
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time fluctuations for various system sizes at p=0.10 (log-normal scales). The solid
straight line indicates a pure exponential tail.

P̂max
< (x̂) � e−e−(ax̂+γ)

, (30)

where a=π/
√

6. Note that with appropriately chosen scaled variables, the conver-
gence to the FTG distribution holds not only for exponential variables, but also
for more general ones with “exponential-like” tails P>(x)�e−cxδ

(i.e., decaying
faster than any power law) [49,50,60,61]. For any δ �=1, however, the convergence
to (28) or (30) is extremely (logarithmically) slow [61].

For the SW synchronized PDES scheme with N PEs we showed that a
finite correlation length ξ(h)(p)�1/

√
Σ(p) effectively decouples the local sim-

ulated times. Then, the extreme-value limit theorems can be applied [60,61]
using the number of independent blocks N/ξ(h) in the system. Further, we
found [62] that the tail of disorder-averaged distribution of the individual rel-
ative height fluctuations (independent of the site i) are simple exponentials
P>(hi − h̄)�exp[−c(hi − h̄)/w] with w≡√〈w2〉. The histogram for the corre-
sponding probability density function, p(hi − h̄), is shown in Fig. 7.

From the general extreme-value limit theorems, discussed above, it follows
that the scaled extreme-height fluctuations are governed by the FTG distribution
(30) (if scaled to zero mean and unit variance). Further, from (29), the average
maximum relative height, ∆max = hmax − h̄, will scale as

〈∆max〉 � w

c
ln(N/ξ(h)) � w

c
ln(N) , (31)

where we dropped all N -independent terms. Note that both w and ξ(h) approach
their finite N -independent values for any non-zero p, and the only N dependent
factor is ln(N) for large N values.

Agreement between the simulated PDES extremal fluctuations and the above
considerations are rather convincing. In Fig. 8(a) we show the scaled histograms
(to zero mean and unit variance) for the extreme-height fluctuations together
with the probability density, corresponding to (30)
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Fig. 8. Extreme fluctuations in the the small-world synchronized PDES time horizon
for p=0.10. (a) Probability density of the scaled extremal fluctuations and comparison
with the FTG density equation (32). (b) Average of the extremal fluctuations (also
shown is the width for comparison). The solid straight line indicates the logarithmic
divergence.

p̂(x̂) � ae−(ax̂+γ)−e−(ax̂+γ)
, (32)

We note again, that the underlying reason for the fast convergence to the FTG
density of the simulated time horizon is that the local relative height distri-
butions exhibit pure exponential tails. Also, for the more general distribution
P>(hi − h̄)�exp[−c((hi − h̄)/w)δ], the approach to the FTG limit distribution
would be very slow and the corresponding maximum fluctuations would scale as
∼[ln(N)]1/δ [53,61,62], as opposed to (31).

In Fig. 8(b) we show the average of the largest fluctuations above the
mean, ∆max, for the simulated PDES time horizon. The figure confirms that
for large enough N (when 〈w2〉 essentially becomes system-size independent)
∆max increases logarithmically with the system size, according to (31) [Fig. 8(b].
Simulation results for the actual PDES scheme also indicate [62] that the largest
deviations below the mean, ∆min = h̄ − hmin, and the maximum separation,
∆ = hmax− hmin, scale the same way as ∆max, i.e., diverge logarithmically with
the system size. Note, that similar to the width and the utilization, the extremal
height fluctuations are also self-averaging [53,62].

The implication of these findings is that while the width becomes finite
for SW-synchronized virtual times, any node can exhibit fluctuations of size
O(ln(N)) in its local simulated time (related to the local memory need). We
refer to this property as “marginally” scalable for the measurement phase (due
to the weak logarithmic divergence). This property still ensures synchronization
in a practical sense for the SW-synchronized PDES scheme with millions of PEs.
Note, that this logarithmic system-size dependence of the extreme fluctuations
is generic to coupled multi-component system, where some local relaxational
dynamics is extended to a SW network [53,62].
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4 Summary

Based on a mapping [25] between the evolution of the virtual time horizon for the
basic conservative PDES scheme [11,12] and kinetically grown non-equilibrium
surfaces [28], we constructed a coarse-grained description for the scalability and
performance of such large-scale parallel simulation schemes. These schemes can
be applied to large spatially extended systems with short-range interactions and
asynchronous dynamics. The one-site-per PE basic PDES was shown to exhibit
KPZ-like kinetic roughening. This scheme is scalable in that the average progress
rate of the PEs approaches a non-zero value. The spread of the virtual time
horizon, however, diverges as the square root of the number of PEs, leading to
“de-synchronization” and difficulties in data management.

Universality arguments, and actual PDES simulations suggest [31], that the
above characteristics generically hold for any underlying system with short-range
interactions for any finite number of sites per PE implementations. Possible
idling due to the conservative synchronization rules and actual communication
times can be greatly suppressed by each PE carrying a large block of sites [11,
12], yielding encouraging values for the utilization for actual implementations [8].
When the PEs carry many sites, however, the saturation value of the width can
become extremely large. More precisely, there is an additional fast-roughening
phase for early times when the evolution of the time horizon corresponds to
random deposition [31]. Subsequently, it will cross over to the KPZ growth regime
and finally saturate. This further motivates the need for some sort of extra
synchronizations to suppress the roughness of the time horizon.

Our goal here was to achieve synchronization without any global interven-
tion. We constructed a specific version of the SW network, where each PE was
connected to exactly one other randomly chosen PE. The extra synchroniza-
tional steps through the random links are merely used to control the width. The
virtual time horizon for the SW-synchronized PDES scheme becomes “macro-
scopically” smooth and essentially exhibits mean-field like characteristics. The
random links, on top of a regular lattice, generate an effective “mass” for the
propagator of the virtual time horizon, corresponding to a nonzero correlation
length. The width becomes finite, for an arbitrary small rate of synchronization
through the random links, while the utilization remains nonzero, yielding a fully
scalable PDES scheme. The former statement is only marginally weakened by
observing that the extreme fluctuations in the time horizon can exhibit loga-
rithmically large values as a function of the total number of PEs. The above
predictions of the coarse-grained PDES model were confirmed by actually “sim-
ulating the simulations”.

The generalization when random links are added to a higher-dimensional
underlying regular lattice is clear: since our construction of the SW network
(“hard” version) on a one-dimensional regular substrate is already mean-field,
in higher dimensions it will be even more so [44] (i.e., the critical dimension of our
SW network is less than one). Note that synchronizability on scale-free networks
[45,63] was also studied recently. The results indicate that a PDES scheme is
marginally scalable if the communication topology between the PEs is a scale-



Small-World Synchronized Scalable Computing Networks 273

free network [35]. The implication of this finding is that the internet, which is
already exploited for distributed computing for mostly “embarrassingly parallel”
problems through existing GRID-based schemes [16,17], may have the potential
to accommodate efficient complex system simulations (such as asynchronous
PDES) where the nodes frequently have to synchronize with each other.

The above construction of a fully scalable algorithm for simulating large
systems with asynchronous dynamics and short-range interactions is an example
for the enormous “computational power and synchronizability” [20] that can be
achieved by SW couplings. The suppression of critical fluctuations of the virtual
time horizon is also closely related to the emergence of mean-field-like phase
transitions and phase ordering in non-frustrated interacting systems [1,64–70].

Recent theoretical work also supports [43,44,71] that systems without inher-
ent frustration exhibit strict or anomalous mean-field characteristics when the
original short-range interaction topology is modified to a SW network.

Acknowledgements

Discussions with G. Györgyi, M.B. Hastings, G. Istrate, B. Kozma, B.D.
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